IDI Open
Programming Contest
April 17th, 2010

Problem Set

Guarding the Border
Beehive Epidemic

Mobile Gaming

Balancing Weights (Easy)
Ambulance Antics
Nurikabe

Cookie Monster (Easy)
Typing Monkey

The Diligent Cryptographer
Combat Odds

=T OO OOQ W=

Jury and Problem Writers

Eirik Reksten, Steria
Ruben Spaans, IDI/NTNU
Tor Gunnar Hgst Houeland, IDI/NTNU
Rune Fevang, Opera Software

Problem 1

The Diligent Cryptographer

Halvor is in charge of the Single Sign-On (SSO) login system for
Identity Directories, Inc. He has been a passionate supporter of their
technology for years, telling anyone who will listen how it makes user
authentication simpler and more secure with the encrypted login back-
end provided by Trustworthy Enterprises (TE). Last week Halvor got
a newsletter from TE, where they introduced their new and highly
innovative Open Trust Protection (OTP) system, which was recently
implemented and has been used for new accounts and users that
changed their password in the last month.

Previously, a user’s cryptographic key consisted of a permutation
of the first letters of the alphabet, repeated many times so it could be
used for long messages. In the new improved system the cryptographic
key instead consists of random letters generated by a lava lamp-based
sub-contractor.

As an example the string BCAEDBCAEDBCAED was a possible key in
the old system since this is a repetition of BCAED, which is a permutation
of the letters from A to E. The strings BCDBCD and BABBABBABBAB
would not be possible, since the letter A is missing from the repeated
permutation BCD, and BAB is not a permutation of AB since there are
two B’s.

Halvor decides to change the keys for the users that have not already
been automatically moved to the new system. Luckily he has read and write access to
all the keys for his users, and has contracted you to write a program to determine which
users need to be updated. To avoid any privacy concerns, you are only given a list of the
user’s names, last login times and up to the first 1000 letters of their key.

Thus for the old system the end of the key substring you receive might be cut off in the
middle of a repetition, but the first letter is guaranteed to be the start of a permutation.
For the new system the entire string will be random, including the letters you receive.

21

Input specifications

The first line of input contains a single number 7', the number of test cases to follow.
Each test case consists of one line containing a string K, which is the first part of a user’s
cryptographic key.

Output specifications

For each test case, output a line containing the line "old” if K is definitely from the old
system, "new” if K is definitely from the new system, or "unknown” if this cannot be
determined from the provided key substring.

Notes and Constraints

e 1 <T <1000
e 1 <|K| <1000
o All letters in the input string are uppercase (clarification)
e The entropy can be written as H(X) = — > """ | p(z;) log,(x;), where p denotes the
probability mass function of X.
Sample input Output for sample input
4
ABCD unknown
BB new
HELP unknown

TAMTRAPPEDINACRYPTOGRAPHICKEYFACTORY new

22

IDI Open
Programming Contest
April 2nd, 2011

Problem Set

Soundex

Sheep Frenzy

LOL (Easy)

Treasure Hunt

Cross Country Race
Beads

Sleeping at Work

Is it a Number (Easy)
Proud Penguin

T OMH"mEHgOOQ W=

Travelling Tom

Jury and Problem Writers

Eirik Reksten, Steria
Ruben Spaans, NTNU

Erik Axel Nielsen, McKinsey & Company
Tor Gunnar Hgst Houeland, IDI/NTNU

Problem A

Soundex

Soundex is a phonetic algorithm for transforming a string
into a code, which is always a letter followed by three digits.
The purpose is that strings with a different spelling but
similar pronounciation will be transformed into the same
code. The transformation rules are as follows:

e The first letter of the string is the first letter of the
code.
e Subsequent consonants are replaced by digits:

— b, £, p, v with 1

-c,8 J,k,q, s, x, zwith 2
— d, t with 3

— 1 with 4

— m, n with 5

— r with 6

h and w are ignored. The vowels, a, e, i, o, u and y,
are not encoded.

e Two or more adjacent letters with the same digit are
replaced with a single digit. Two or more letters with
the same digit separated with h or w are also replaced
by a single digit. Two letters with the same digit
separated by a vowel will appear as the digit twice.

e Repeat the previous step until it isn’t possible to
replace repeating digits with one digit.

e If the resulting code has less than 3 digits, pad the
end with zeroes until the code has 3 digits. If there
are more than 3 digits, drop the rightmost digits.

Some example transformations are:

e Both robert and rupert are transformed to R163.

e baawwwww is transformed to B00O.

e hopp is transformed to H100. The first letter of the string always becomes the first
letter in the code, even if it is a vowel or h or w.

e ratatata is transformed to R333, because the vowel between each pair of t (3)
forces the digit to be repeated.

e yhhhwthwhtwhthwhwth is transformed to X300. All occurrences of h and w are
ignored, leaving only one 3 in the code.

e bbpb is transformed to B100. The first b is kept separate from the last three b’s.
The remaining b’s are consecutive and are replaced with one digit.

Your evil friend Halvor has noticed that a lot of different words will give the same
soundex code. For example, the strings rhhhbm, rubeno, rpowam, robnew and 73908
other strings with 6 or less letters will be converted to the code R150. This makes him
very curious, and he wants to know the number of strings of the a given length or shorter
that will be converted to the same soundex code. Naturally, he wants you to write a
computer program to accomplish this task. Your friend does not care about upper or
lower case, so AA, Aa, aa etc are considered to be equal strings and should only be counted
once.

Input specifications

The first line of input contains a single integer T', the number of test cases to follow. Each
test case begins with a line containing a string S and an integer number L. S represents a
soundex code, and consists of one uppercase letter followed by three digits. L represents
the maximum length of the original string which is converted into the given soundex code.

Output specifications

For each test case output one line containing a single number, the number of strings of
length L or less having the soundex code S. This number can be large, so output it
modulo 1,000,000,007.

Notes and Constraints

0<T <100

0 < L <1000

All soundex codes will start with an uppercase letter.

Two strings S and 7" are equal if they have the same length and the letters s;,t; at

each position are equal, regardless of case.

e Only letters between a and z are considered. No @, g, & or other non-English
characters are to be used.

e The soundex code is always legal. That is, a non-zero digit will never follow a zero

digit, and the digits range from 0 to 6.

Sample input Output for sample input
3

A300 2 2

R150 6 73912

X123 1 0

	idiopen2010_halvorproblemfront
	idiopen2010_halvorproblem
	idiopen2011_halvorproblemfront
	idiopen2011_halvorproblem

